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I 

The influence of electrolytes on the behavior of the amino acids and 
proteins is perhaps one of the most important topics in the physical 
chemistry of these substances. I t has long been known that there is a 
strong thermodynamic interaction between electrolytes and the amino 
acids and proteins. In recent years the accurate measurements of Cohn 
and his coworkers (1, 2, 3, 4, 5) have provided a large body of thermody­
namic data relating to this question. 

With the accumulation of evidence in favor of the dipolar ion or zwit-
ter-ion structure of the amino acids and proteins in the isoelectric condi­
tion in solvents of high dielectric constant, it has become apparent that 
thermodynamic interaction between electrolytes and these substances 
can, in large measure, be attributed to the strong electrostatic intermolecu-
lar forces between dipolar ions and real ions in solution. A dipolar ion, 
while bearing no net charge, is characterized by electric multipole mo­
ments of large magnitude. For example, the glycine dipolar ion, 
NHjCH2COO - , possesses a dipole moment of about 15 Debye units, 
about ten times that of an ordinary polar molecule. Thus a dipolar ion 
is in a sense a superpolar molecule, surrounded by an intense electro­
static field. 

An extension of the Debye-Hiickel theory describing the electrostatic 
interaction of dipolar ions and real ions in solution was developed by 
Scatchard and the writer (10) and later elaborated in some detail by the 
writer (8) for dipolar ions of spherical shape. I t is the purpose of the 
present article to review the possible applications of the theory and to 
extend it to dipolar ions of elongated shape. In this extension of the 
theory we shall confine ourselves to limiting laws approached at high 

1 Presented at the Symposium on the Physical Chemistry of the Proteins, held 
at Milwaukee, Wisconsin, September, 1938, under the auspices of the Division of 
Physical and Inorganic Chemistry and the Division of Colloid Chemistry of the 
American Chemical Society. 
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dilution, making use of a method similar to that developed by Fuoss (6) 
for the study of dipole-dipole interaction, rather than the somewhat more 
complicated method based upon the Debye-Htickel theory. 

The theory may be employed in two ways. By means of it the in­
fluence of electrolytes upon the chemical potential of a dipolar ion of 
known electrical structure may be predicted. On the other hand, it may 
be used to determine the structure, for example, the distance between the 
charged groups and the dipole moments, of simple dipolar ions from data 
relating to the influence of electrolytes on their chemical potentials. For 
the latter purpose we shall make extensive use of the measurements of 
Cohn and his coworkers. 

In this article we shall limit the discussion to the aliphatic amino acids 
and their peptides, since the proteins present certain ambiguities of inter­
pretation with which we cannot concern ourselves here. Thus, so many 
parameters are required to specify the charge distribution of protein 
dipolar ions that they cannot be uniquely determined from the influence 
of electrolyte upon chemical potential. On the other hand, too little is 
known at present about the details of protein structure to permit a prob­
able assignment of configuration to the dipolar ionic charges from which 
to predict the interaction with electrolytes. Nevertheless, as Cohn has 
shown, certain progress can be made along the latter lines, and observed 
electrolyte effects can, in the case of egg albumin and hemoglobin (5), be 
reproduced by hypothetical though not unique assignments of charge 
configuration. 

II 

We shall be interested in the properties of a solution containing a dipolar 
ion component i at a molar concentration, c,-, and v ionic components at 
molar concentrations, C\ . . . c„, in a solvent of dielectric constant D. 
The pertinent thermodynamic properties of the solution may be derived 
from the chemical potentials of the several components. We shall be 
particularly concerned with the chemical potential of the dipolar ion 
species, which may be written in conventional form, 

m = RT log yiCi + nliT, p) 

M? = Hm [^ - RT log Ci] 
C l * • - C y 

=0 

where ji, the activity coefficient, is denned by this equation. 
We shall make the simplifying assumption that the deviation of the 

solution from ideal behavior is due to electrostatic intermolecular forces 
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alone. If the solvent is idealized as a structureless dielectric continuum, 
the logarithm of the activity coefficient, y(, may be written as follows (8), 

M-I 

log Ti = 2 BikCk 
k-1 

f f Vae-*WikW dX dv 3^=Mb1 ' Vae-ffw^dXdv (2) 

P = 1/kT 

where the sum extends over all v + 1 solute components. Va is the 
electrostatic work required to bring the pair of molecules or ions, i and k, 
from infinite separation to the given configuration in the pure solvent, 
and Wi*(X) is the average work (potential of average force) expended in 
the same process in the actual solution, all charges, ex • • • e,, of molecule 
i having a fraction, X, of their full values. The integration extends over 
all values of the relative coordinates of the pair of molecules in the volume, 
v, of the solution and outside a region, co, of molecular dimensions de­
termined by the size and shape of the two molecules, into which inter-
molecular repulsion at short range prevents penetration.2 

According to the Debye-Hiickel theory the potentials of average force, 
Wik, necessary for the evaluation of the coefficients, Bik, satisfy the fol­
lowing relation, 

Wa-(X) = zk&Pi{\ Tk) (3) 

where \pi is the average electrostatic potential at the point Tk from an 
origin in molecule i and zue is the charge of ion k. The potential, ipt, 
satisfies the Poisson-Boltzmann equation of the Debye-Hiickel theory, 
which in its linear approximation is 

VVi - K% = 0 

2 _ 4TrATe2 V-, 2 (4) 

* ~ immTtiCkZk 

2 Equation 2, while somewhat more convenient for our purposes, is essentially 
equivalent to the more usual expression, based on the Guntelberg-Muller charging 
process 

kTlogji = X)«< f M(Xei, . . . Xe,)-*i(Xei, Xe.) IdX 

where 4n is the average electrostatic potential at the point of location of charge, 
ei, of molecule i in the actual solution and \fr1 is its value at infinite dilution, all 
charges, ei . . . e,, having a fraction, X, of their full values. 
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outside the region of non-penetration, while in <o Laplace's equation is 
satisfied. 

W * = O (5) 

Solution of equations 4 and 5, subject to the boundary conditions of 
electrostatics on the surface of w, continuity of the potential and the 
normal component of the dielectric displacement, yields \pi, which may 
be used in equation 2 or 2a for the calculation of the activity coefficient. 
This method has been employed by the writer to study the influence of 
electrolytes on the activity of spherical dipolar ions (8). 

In the present article we propose to use a somewhat simpler method, 
which yields only a limiting law. Only linear terms in the expansion of 
the logarithm of the activity coefficient in the concentrations of the vari­
ous solute species appear, thus allowing the treatment of non-spherical di­
polar ions and permitting the inclusion of "salting-out" forces between an 
ion and a dipolar ion. The latter arise from a repulsion between the 
ionic charge and an image distribution in the cavity of low dielectric 
constant created by the dipolar ion in the solvent. I t is evident that 

lim Wik(h) = \Vik (6) 
« l i • • • C, + 1 - 0 

If we are content with the linear terms in a power series in the ionic con­
centrations, we may, therefore, write equation 2 in the following form, 

V 

log Yi = 2 BaCk 
* - i 

B°ik = lim Bik 

For simplicity we suppose that the term in the sum, equation 2, arising 
from the mutual interaction of dipolar ions is negligible and thus limit 
ourselves to solutions in which the concentration of dipolar ions is itself 
small. If desired, the £?< for mutual dipolar interaction may be obtained 
from Fuoss' calculations for dipole molecules (6). The development (equa­
tion 7) is only possible when the integrals defining the Bik exist. Al­
though they diverge when the component i is a true ion, they exist when 
it is a dipolar ion, bearing no net charge, and the expansion is suitable 
for our purposes. In solvents of relatively high dielectric constant at 
ordinary temperatures, a satisfactory approximation to the B« may be 
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obtained by expansion of 1 — e ?Vik with retention of the first two terms 
alone. 

^ = lSof^-f^]dy (8) 

For a dipolar ion characterized by a set of charges, e\ • • • es, distributed 
in a cavity, «o, of dielectric constant D0, the electrical work, Vik, required 
to bring a true ion of charge, zke, from infinity to a point Xk from an origin 
fixed in the dipolar ion i is given by 

Va = \ L e ^ ( r * ) + g Cl*S(r,)} (9) 

where *°(r0 is the electrostatic potential in the interior of «0 at the loca­
tion of the charge, ei, and \p°e(ik) is the potential at the point rk exterior 
to O)0, when the ion and dipolar ion are fixed in the given configuration in 
the pure solvent. Self-energy terms in equation 9 are to be omitted, 
Vik vanishing when the ions are at infinite separation. The potentials 
wl and *° satisfy Laplace's equation, VV = O, both interior and exterior 
to the surface of co0, and fulfill the usual boundary conditions everywhere 
on this surface, 

;° _ /° 
Wi = We 

Z)0Ii-W/? = Dn-V^! 

where n is a unit vector normal to the surface. In addition, the potentials 
must have the singularities characteristic of the real charge distributions 
of the two ions. The details of the determination of the electrostatic 
potential for dipolar ions of several shapes are given in the appendix. 

We first consider a spherical dipolar ion of radius b, the charge distribu­
tion of which may be characterized by a point dipole of moment, n, lo­
cated at its center. The cavity, w0, is thus a sphere of radius b, and the 
excluded region, w, in the integral (equation 8) is a sphere of radius a, 
the sum of the radii of the dipolar ion and the real ion, all real ions in 
the solution being spheres of the same radius. The potential energy, 
Vik, has the following form, 

v = Zzk6fl cos * -4-ZJ^L D ~ Do T n+ 1 W ei ii 
'* (2D +D0)T* + 2TT* D to (n + 2)D + (n + I)D0 \r) { 1 ) 

where r is the distance between the centers of the ion and dipolar ion, 
and # is the angle between the vectors, r and y, the dipole moment. The 
second member of equation 11 represents a repulsion between the real 
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ion and an image distribution in the cavity, co0, created by the dipolar 
ion in the solvent. A similar term, usually of much smaller magnitude, 
arising from the interaction of the dipolar ion and an image distribution 
in the ionic cavity has been suppressed. 

Substitution of equation 11 in equations 7 and 8 and the neglect of 
small terms in Da/D in the summation of the resulting series yields the 
following limiting law for the activity coefficient of the dipolar ion com­
ponent of the solution, 

logio 7i = - BiT 

r-(i/2)gc*i (12) 

' 230WkT \2 DakT a aWJ 

where r is the ionic strength of the solution, p is the ratio b/a, and a(p) 
is a function tabulated in table 1. Insertion of numerical values for the 

TABLE 1 
«M = (V) I G>3 - 2) log (1 + p) - 0>3 + 2) log (1 - p) - 2p°! 

P 

0.0 
0.2 
0.4 
0.6 
0.8 
0.9 

«M 

1.00 
1.01 
1.08 
1.21 
1.54 
1.96 

universal constants and the introduction of the dielectric constant of water, 
Dw, yields at 250C. 

Bf = 5.48 X KT8UV-D)VVa = 0.125 {Dw/D)2R2/a (13) 

Bi" = 4.66 X lO'\DJD){vi/a)a{P) 

where R is the effective dipole separation, ju/e, and Vi is equal to 47riVb3/3, 
the value at infinite dilution of the partial molal volume of the dipolar 
ion component under the idealization of the solvent as structureless con­
tinuum. The units employed in equation 13 are the Debye unit for di­
pole moment and the Angstrom unit for the lengths R and a. The term 
Bf gives rise to a decrease in the chemical potential of the dipolar ion 
by electrolyte ("salting-in"), while the term Bl0) gives rise to an increase 
("salting-out"). The latter effect was not included in the writer's previous 
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treatment (8), based on the Debye-Hiickel theory. If the term £,-0) is 
omitted in equation 12, a limiting law in exact agreement with the writer's 
earlier one is reached. 

We next consider a dipolar ion of prolate ellipsoidal shape, characterized 
by a charge distribution consisting of two charges, +e and — e, located 
at the foci. It is convenient to employ confocal elliptical coordinates in 
the treatment of this model. Thus a point situated at distances rx and 
r2 from the respective foci of the ellipsoid and in a plane inclined at an 
angle, <p, to the reference plane containing the major axis is specified by 
the coordinates X, rj, and <p. 

X = (ri + r,)/B 
(14) 

Jj = ( J - I - n)/R 

where R is the interfocal distance. The cavity, wo, is an ellipsoid of ec­
centricity, e, equal to 1/X0, and the region w, into which ions cannot pene­
trate is, for simplicity, assumed identical with w0, although this is strictly 
true only for vanishing ion size. The potential energy, Vik, of the dipolar 
ion and a real ion of charge z*e is closely approximated by the following 
expression, 

_ izke
2 Tj i [ \ (Xo - 1) , X, 

Va ~ "DR \ C 7 M X o _^logJ±{] (15) 
Equation 15 is exact for the two limiting cases, zero and unit eccentricity, 
and only slightly inaccurate, owing to the approximate summation of an 
infinite series, for intermediate eccentricities. The term arising from the 
interaction of the ion with its image distribution in the dipolar ion cavity, 
included for the sphere, has been omitted in equation 15, since it intro­
duces undue complication, which we postpone for later, in the evaluation 
of the integral (equation 8). Introduction of the coordinates X and TJ as 
variables of integration in the latter equation leads to the following ex­
pression 

O 2 D 3 

the term linear in Vik vanishing since it is an odd function of JJ. Equation 
16, together with equations 7 and 15, yields for the logarithm of the activity 
coefficient of the dipolar ion, 

logw Ji = - BiV 

R = 27TJVeV(X0) p 
' 2303 (DkTy (17) 

^0)= X-[Xo_^illog ^1
1J1 
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Insertion of numerical values for the constants gives, at 250C, 

Bi = 0.167(DJDYg (Xo)B (18) 

A tabulation of g as a function of the eccentricity of the ellipsoidal cavity 
is given in table 2. We remark that for constant eccentricity Bi is pro­
portional to the first power of the distance, R, between the charges of 
the dipolar ion. For elongated ellipsoids in the neighborhood of unit 
eccentricity, the function g is approximately unity. For ellipsoids nearly 
spherical, g may be expanded in a power series in R/a, where a is the 
shortest distance of either focus to the surface, equal to the radius of the 
sphere at zero eccentricity. The initial term of the series, 3i?/4a, when 
substituted in equation 18 yields an expression identical with B<0) (equa­
tion 13) for a dipole at the center of a sphere. No counterpart of B,-0 is 
obtained, since we have neglected the "salting-out" influence of image 

TABLE 2 
g as a function of the eccentricity of the ellipsoidal cavity 

C 

0.00 
0.20 
0.33 
0.50 
0.60 
0.70 
0.80 
1.00 

»(«) 

0.00 
0.30 
0.49 
0.71 
0.83 
0.94 
1.01 
1.00 

«(1 - J)-W1U) 

0.00 
0.061 
0.17 
0.39 
0.58 
0.82 
1.14 

forces in the present case. While we shall not consider the problem in 
detail in the present article, it seems reasonable to suppose that the mag­
nitude of Bi for an ellipsoid can be roughly estimated by an analog of 
the spherical formula, equation 13, in which vjl appears instead of Vi/a, 
I being a length intermediate between the semi-major and semi-minor 
axes of the ellipsoid. 

We shall also discuss a second model in which the dipolar ion is ellipsoidal 
in shape but characterized by a charge distribution consisting of a point 
dipole of moment, M, situated at one of the foci and parallel to the major 
axis. The calculations proceed in the same manner as for the first el­
lipsoidal model except that the potential, Vik, is of the form, 

Va = 
47TZ^e XT? 

DR2 (X + r,)3 (19) 
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The logarithm of the activity coefficient of the dipolar ion is finally cal­
culated to be 

logio ti = - BtT 

R = 3TrJVeVx0) M2 

' 2303(DkTy R (20) 

,., 8 1 + 3(X2Q - I)"1 + 4(X2Q - I)" ' 

With numerical values for the constants at 25°C, B{ is given by the fol­
lowing equation, 

Bt = 5.48 X 10-'(Z)V-D)2W(Xo)MV^ (21) 

in which the Debye and the Angstrom are the units employed. The 
function w(X0) is listed for several eccentricities in table 3. In the limit 

TABLE 3 
Values of the function u(Xo) 

t 

0.00 
0.20 
0.33 
0.50 
0.60 
0.70 
0.80 

«(«) 

0.00 
0.47 
1.03 
2.92 
6.31 

16.5 
81.5 

, (1 _ ,J)-Ul [„ ( , ) ] - ! 

0.50 
0.43 
0.33 
0.19 
0.11 
0.053 
0.014 

of zero eccentricity of the ellipsoid, u(t)/R reduces to 1/a, where a is the 
radius of the sphere, and equations 20 and 21 reduce to 12 and 13, except 
for the "salting-out" term. 

Il l 

We are now ready for a brief review of the interpretation of the thermo­
dynamic interaction of dipolar ions and electrolytes by means of the equa­
tions put forward in the preceding section. For this purpose we turn to 
the data of Cohn and his coworkers (1, 2, 3), relating to the influence of 
electrolytes on the solubility of the aliphatic amino acids and the peptides 
of glycine. If s and S0 are the solubilities of a dipolar ion in a given solvent 
in the presence and in the absence of electrolyte, the conditions of hetero­
geneous equilibrium require that the ratio so/s be equal to y, the activity 
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coefficient in the presence of electrolyte, the solution being assumed ideal 
when the dipolar ion component is present alone. We may therefore 
write a limiting solubility law in the following form, 

logio(s/s0) = BV (22) 

where r is the ionic strength and B is given by one of equations 12, 17, or 
20, according to the assumed structure of the dipolar ion. The data of 
Cohn confirm the form of the limiting law, in which the initial term is 
linear in the ionic strength, and the coefficient B may be obtained from 
the limiting slopes of his solubility curves. In order to correlate measure­
ments in solvents of different dielectric constant, it is convenient to intro­
duce a coefficient JB0 equal to (D/DW)2B, related to the solubility ratio 
as follows, 

'd(DJD) IQg10 (s/so)l ,oi\ 
. d(D/D.)T J (23) 

From equations 12, 17, and 20 we remark that the theory predicts that 
B0 should be independent of the dielectric constant of the solvent if 
"salting-out" forces due to image repulsion are of small magnitude. This 
independence is approximately confirmed by Cohn's measurements (1) of 
the solubilities of the amino acids in alcohol-water mixtures, from which 
we may conclude that the "salting-out" forces are of secondary impor­
tance, though not negligible. 

We shall first discuss the solubility data for the simplest amino acid, 
glycine, on the basis of the spherical dipolar ion model. The dipole 
moment, /u, may be computed from the solubility coefficient, B0, by equa­
tion 13. 

B0 = lim 
r-o 

M = Vl83B^0)o 

B?> = (D/Dw)2Bm ( 2 4 ) 

From the partial molal volume of glycine at infinite dilution in water and 
the ionic radii of Pauling and Huggins (9), Cohn (1) estimates a to be 
3.90 for glycine and lithium chloride. From the solubility of glycine in 
the presence of lithium chloride in alcohol-water solvents of decreasing 
dielectric constant, he determines Bo0> to be 0.32. Substitution of these 
values in equation 24 yields a value, 15 Debye units, for the glycine 
dipole moment. This value is in agreement with the dipole moment, 
calculated on the basis of structural considerations, for the glycine dipolar 
ion in which the terminal NHjT and COO- carry residual charges +e and 
—e, respectively. It is also of interest to consider the "salting-out" co­
efficient BoV. Its relative importance becomes greater with increasing 
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dielectric constant of the solvent. Although in water the high solubility of 
glycine prevents the use of equation 22 without a term for the mutual 
dipolar ion interaction, the coefficient B0 may be obtained from electro­
motive force measurements of Joseph (7) and freezing point measurements 
of Scatchard and Prentiss (11). For glycine and sodium chloride in 
water at 250C, B0 has the value 0.24. The difference between this value 
and B0^, roughly 0.08, gives the "salting-out" coefficient, Bo", on the 
basis of the present theory. For glycine and sodium chloride Cohn calcu­
lates a to be 4.05 and p is 0.7. By linear interpolation in table 1, we obtain 
for a(p) a value 1.37. With these values and Cohn's estimate, 57 cc , for 
the limiting partial molal volume of glycine, corrected for solvent electro-
striction, we calculate from equation 13 the value 0.08 for Bo0). Thus in 
water the "salting-out" contribution arising from image forces amounts 
to about 25 per cent of the "salting-in" contribution to the solubility 
coefficient, Bo0), arising from the interaction of the ions of the electrolyte 
and the true charges of the dipolar ion. 

We shall now discuss glycine and its peptides on the basis of the first 
ellipsoidal model, in which two charges of opposite sign are situated at 
the foci. The calculations will be somewhat more approximate than 
those for glycine on the spherical model, since the ion size of the electrolyte 
is neglected and the "salting-out" influence of image forces is not in­
cluded. The distance R between the foci of an ellipsoid of eccentricity 
e and volume v/N may be expressed in the following manner 

B = ep(l - e2)~* (25) 

A 

where the length p is equal to (Qv/Nr) and is to be expressed in Angstrom 
units. With numerical values for the constants, we have 

p = 1.47 Vs (26) 

where the molal volume v is in cubic centimeters. For a sphere p is the 
diameter. From equations 18, 25, and 26 we may write 

B0 = 0.167«p(l - e2)"*g(€) 

R = «p(l - e2)* (27) 

p = 1.47»' 

From the first of these equations and the experimental value of B0 the 
eccentricity of the molecular ellipsoid may be obtained by linear inter­
polation in table 2. From the eccentricity and the molal volume, the 
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charge separation of the dipolar ion may then be computed with the second 
of the equations. Calculations for glycine, diglycine, triglycine, and 
/3-alanine are summarized in table 4. They are based on Cohn's experi­
mental values of B0 and on his estimates of molal volumes corrected for 
solvent electrostriction (1). The distance, 2.8 A., for glycine, corresponds 
to a dipole moment of 13, which differs only slightly from the value 15 
obtained on the basis of the spherical model. A significant part of the 
difference between the two values is due to the neglect of electrolyte ion 
size in the ellipsoidal calculation. It therefore appears that we cannot 
conclude much as to the shape of the glycine dipolar ion from the influence 
of salts on its activity. However, owing to this very insensitivity to 
shape, we can place considerable confidence in the value of the dipole 
moment computed from the salt effect. The distances 4.7 and 6.4 com­
puted for diglycine and triglycine are considerably below the values, 
6.7 and 10.2, estimated by Cohn (1) for an extended chain configuration. 
Thus our calculations suggest that the extended chain configuration is 

TABLE 4 
Values of B„, v, and R for four dipolar ions 

Bo R 

Glycine... 
Diglycine, 
Triglycine 
(3-Alanine . 

0.32 
0.58 
0.80 
0.43 

57 
93 

130 
73 

2.8 
4.7 
6.4 
3.6 

not the preferred one, but that, owing to internal rotation, the average 
separation of the charges in these dipolar ions lies intermediate between 
the extended chain value and the free rotation value. Under these 
circumstances the computed distances have only formal significance as 
average distances unless a single preferred configuration should happen 
to dominate all others in probability. To take internal rotation properly 
into account, we should compute a B0 for each internal configuration and 
then average over all configurations with an appropriate distribution 
function for comparison with the experimental value of Bo- At present 
it is not possible to do this; moreover, the ellipsoidal model would be an 
extremely rough approximation for "crumpled" configurations. 

Finally we shall discuss a series of the aliphatic alpha-amino acids on 
the basis of the second ellipsoidal model in which a point dipole is located 
at one focus. We represent glycine by a sphere with a point dipole at 
its center, 2.8 A. from the surface of the molecule, and the homologs of 
glycine by ellipsoids with point dipoles at a focus located at the same 
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distance, 2.8 A., as in glycine, from the surface of the molecule measured 
along the major axis. The eccentricity of the ellipsoid is then determined 
by the relation 

(1 - 0(1 - <2) * = 2l/p (28) 

where p is defined by equation 26 in terms of the molecular volume, and 
I, the distance of a focus from the surface, is 2.8 A. in the subsequent cal­
culations. Equation 28 may be roughly solved by linear interpolation 

TABLE 5 
lip as a function of the eccentricity of the ellipsoidal cavity 

2WP) 

1.00 
0.81 
0.70 
0.55 

ff 

0.00 
0.20 
0.33 
0.50 

2(VP) 

0.46 
0.38 
0.28 

e 

0.60 
0.70 
0.80 

Calculated va 

ACID 

Glycine 
a-Alanine 
a-Aminobutyric acid 
Leucine 

TABLE 6 
lues of the dipole moment 

Bt 

0.32 
0.31 
0.31 
0.30 

P 

5.6 
6.1 
6.6 
7.3 

DIPOLE 
UOMSNT 

13 
13 
13 
13 

in table 5. From equations 21 and 25 the following relation between the 
dipole moment of the dipolar ion is obtained 

(29) " = Visaed _e
2)-*Me)r 

Calculations based upon equation 29 and Cohn's values of B0 and molecu­
lar volumes for glycine, a-alanine, a-aminobutyric acid, and leucine are 
listed in table 6. The discrepancy between the dipole moment values 13 
and 15, both based upon the spherical model, is merely due to the neglect 
of electrolyte ion size in the present calculation, a procedure which we see 
does not lead to great error. It is interesting that the calculated dipole 
moments of glycine and of the other aliphatic alpha-amino acids turn out 
to have identical values. This is essentially what would be expected on 
the basis of structural considerations, although small differences could 
possibly arise from induction effects in the different aliphatic chains. 
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The problem of internal rotation does not enter explicitly into the de­
termination of the dipole moments of the alpha-amino acids as it did in 
the case of the peptides of glycine. However, the average configuration 
of the aliphatic chain to which the glycine residue is attached will de­
termine how closely the actual molecule conforms to the ellipsoidal shape, 
which is at best an approximation. 
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APPENDIX 

We shall present here some of the mathematical details in the calcula­
tion of Vik, the electrostatic work required to bring a dipolar ion i and 
a real ion k from infinite separation in the pure solvent to a given relative 
configuration. The real ion is represented by a point charge zue and the 
dipolar ion by a charge distribution ei • • • e, located in a cavity co0, of 
dielectric constant D0, in the solvent of dielectric constant D. The po­
tential Vik is then given by 

Vih = W - W0 (30) 

where W is the work of charging the system in the given configuration 
and W0 the work of charging when the two ions are infinitely separated. 
W is to be calculated by means of the formula 

W = \ j«*e*.fo) + g e^(r , ) | (31) 

where ^(rj) is the electrostatic potential in the interior of u0 at the point 
Ti of location of charge e; and ̂ .(r*) is the potential exterior to co0 at the 
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point of location r* of the real ion. The potentials \pi and \pe both satisfy 
Laplace's equation, 

W< = 0 
(32) 

W. = o 
as well as the boundary conditions 

Ur) = Ur) (33) 

Don- W* ,(r) = Dn-ViAeto 

on the surface of the cavity o>o-

Sphere 

When the cavity w0 is a sphere of radius 6, it is convenient to employ 
polar coordinates (r, #, ip) with origin at the center of the sphere. Poten­
tials \pi and \pe satisfying Laplace's equation and possessing the appropriate 
singularities are 

h = E TTT^1 i + £ £ BnmrnPm
n (cos#)eimv 

1=1 JJo IT — Tl n=0 m=-n 

+ (34) 

*- 5T r̂1
 + 1 J L £? «<—»«'"' 

where the P™(cos $) are the associated Legendre functions of the first 
kind. On the boundary of the sphere b, we have 

*.(&, #, <f) = fi<J>, *, *) 

„(«•) -ft(?A (35) 

\dr/r=b \dr/r~b 
for all values of # and ^ in the intervals 0 to v and 0 and 2-rr. On the 
surface of the sphere we may employ the following harmonic expansions 

Zke = Z I FnmrnPm
n (cos 0)e*"* 

D I r — r& i n=o w— 

_z*e_ (n — I m \)! 
Dr,n + 1(n+ I m|)! FM-^wT!"l.r:(oos»»)e-

S n , * ' r , = f: Z % P̂ (COS «?)e*- (36) 
Z=I i ' o I r — T; I n=0 m n r n + 1 

G - = TT ^ T l m l? l E ^ P ^ c o s &de~imv' D0 (n + I m I)! i-i 
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By substitution of equations 34 and 36 in equation 35 and use of the 
orthogonality of the functions 

P^(COs &)e<m* 

on the surface of the sphere, we obtain the following set of linear equa­
tions for the coefficients Anm and Bnn 

(n + l)Anm - nb2n+1 Fnm = o[(n + l)Gnm - nb2n+1 Bnm] (37) 

o = D0/D 

Solution yields 

R _ 2n+l , (n + l)(<r - 1) Gn 

n + 1 + no n + 1 + no 62n+1 

, _ nil - o)b2n+1 (2n + Do „ 
^*nm ~~ ' ; Z j " nm i | Z i ^J nm 

n + 1 + ntr w -f 1 + no* 

(38) 

Use of equations 34 and 38 in equations 30 and 31 and application of the 
addition theorem of spherical harmonics yield, when the dipolar ion has 
no net charge, 

»« £ £ On + 1)«, (W Pn(cos ^ 
Drk » = i w n + l + «i; V*/ 

2 2 i . o o / L \ S » 

4. n - ) Z k € Y n (-) 
2DrI ^in+l+no \rj 

where rk is the distance of the real ion z*e from the center of the sphere, 
and tiki is the angle between the vectors r* and Ti from the center of the 
sphere terminating in the real ionic charge zke and the charge ei of the 
dipolar ion. When the dipolar ion contains a point dipole at the center, 
the first sum in equation 39 degenerates into 

Zke/i cos dk /,Q-V 
(2D + D0)rl 

and equation 11 results at once from equation 39, with a slight change in 
the summation index in the second sum. In this case the dipolar ion 
may be regarded as possessing two charges +e and — e situated at equal 
distances r0 from the center, with #M = T — #*i. If we pass to the limit 
r0 = O with 

H = 2 lim (er0) 
r 0 -»0 

all terms except for n = 1 vanish in first sum of equation 39, the first 
term reducing to equation 40 if dk\ is designated simply by #*. 
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Before leaving the spherical case, it is perhaps desirable to give the 
general expression for P<0) when the charge distribution of the dipolar ion 
is arbitrary, fi,-1' is still given by equation 13. 

47TJVe2 Y (2n + 1) Mn 

2SQS(DkT)2 w (2n - l)(n + 1 + na) a2"-1 B?> = 

Mn = 2 eiei.r?r?. P„(cos tW 
- i 

where #J<I is the angle between the vectors of length rv and rh joining the 
charges ev and ei to the center of the sphere. For a molecule of the type 
of cystine, a model, consisting of two point dipoles of moment ju perpen­
dicular to a common diameter and each situated at a distance I from the 
center, is useful. In this case equation 41 reduces to 

(o) 8TrNe2 A l + cosy) A 2n + 3 (1Y(A2) 

2SOS(DkT)2 a ^0 (2n + l)[n + 2 + (n + l)ff] W 

where ^ is the angle between the two dipole moments. 

Ellipsoid 
When the cavity w0 is ellipsoidal in form, we may conveniently employ 

confocal elliptical coordinates, X, 77, <p, where X = (ri + r2)/i?, and r\ = 
(T\ — Ti)/R, ri and r2 being the distances of the point from the respective 
foci and R the interfocal distance. The angle <p measures the inclination 
of the plane of n and r2 to a chosen reference plane containing the major 
axis. The cavity u0 is then specified by a value X0 equal to the reciprocal 
of the eccentricity of its elliptical section. We suppose the charges 
d . . . c, of the dipolar ion to lie on the major axis of the ellipsoid. 
We shall further neglect the image distribution induced in the cavity 
W0 by the real ionic charge. Potentials satisfying Laplace's equation and 
having the proper singularities are the following 

CO 

h = H AnPn(v)Qn(\) 
n-0 

(43) 

+< = 23 n ,*' -, + Z BMr1)Qn(X) 
I=I L>o\T — Tl I n - o 

where the Pn(X) and Qn(X) are the Legendre functions of the first and 
second kinds, respectively. 

The boundary conditions are 

^e(Xo, y) = ^.'(X0, v) 

D (^Xx0
 = Do \W X-X0 I 

' - 1 < V < + 1 (44) 
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On the boundary of w0 the initial terms of the second of equations 43 may 
be developed in the Neumann expansion, 

£ n i / ' r i = I £ (2n + I)GnPnO7)Qn(Xo) 
1=1 Doll — Ti\ K n=0 

(45) 

Gn = Z ejP.Gw) 
where (1, rji) are elliptical coordinates of the dipolar ionic charge cj. Ap­
plication of the boundary conditions 44 to equations 43 and 45, use of 
the orthogonality of the functions Pn 0?), yields the set of linear equations, 

AnQn(K0) = BnPn(X0) + (2/B)(2n + I)GnQn(X0) 
(46) 

A,Q'n(Xo) = Cr[BnPl(X0) + (2/P)(2n + I)GnQn(X0)] 

where Qn(X0) and Pn(X0) are the first derivative of the indicated functions, 
and a is the ratio D0/D. Solution of the equations 46 and elimination of 
the derivative Qn(X0) by means of the formula 

PnQn - PnQn = (1 - X2)"1 

yield 

A = 2a; (2n + I)Gn 

" B 1 + (X? - I)(I - ^)Pn(X0)Qn(X0) 
(47) 

fl _ 2(g - 1) (2n + I)Gn 

B 1 - Cr[Pn(X0)Qn(Xo)]Z[Pn(X0)Ql(X0)] 

We now calculate Vm by means of the formula 

Vik = zke<p,(\k, Vk) (48) 

and obtain, neglecting a in comparison with unity in the denominators on 
the right-hand side of equation 47, 

= 2zke Y (2n + I)GnPnOu)Qn(X)O , . 
ik DR n4l I + (Xg- I)Pl(X0)Qn(X0) ^ ' 

The sum begins with n equal to unity since G0, the total charge of the 
dipolar ion, vanishes. By a simple algebraic transformation equation 49 
may be written as follows 

Vik = DR[I + (xg- DQ1(X0)]S{2n + M-r-MQM + Y^>^ 

F(X„^) = 2 ( X ° - ^ e (50) 

f» (2n + DGn[Q1(X0) - Pl(X0)Qn(X0)] , , , , 
"--»[1 + (Xg - DPl(X0)Qn(X0)J[I + (Xg - I)Q1(X0)]

 r " ^ w » ^ 
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The term F(Xi-, »?*) vanishes for the limiting eccentricities zero and unity 
of the ellipsoidal cavity u0 and can be neglected without great error for 
intermediate eccentricities. We therefore have, approximately, 

Vik 
2zke 

DR[I + (X0
2 - I)Qi(Xo)] —i 

E (2ra + l)GnP«(i7*)Q»(X*) (51) 

When the charge distribution of the dipolar ion consists of two charges 
+e and — e situated at the foci (1, 1) and (1, —1), respectively, we have 

Gn = e[l - (-1)"] (52) 

and the series in equation 51 may be summed to give equation 15, when 
we note that 1 + (X2 — I)Qi(X0) is equal to 

X0 
X2. 1 , X H - I 

- log-

On the other hand, when the charge distribution consists of a point dipole 
of moment ut at the focus (1, —1), the Gn's have the form 

Gn = Hm e 
z->0 •(-+5) 

= Hm (ex) 

(-1) *] 

and calculation yields 

Gn = ( _ ! ) » „ ( „ + I)11ZR 

(53) 

(54) 

Summation in equation 51 with the Gn of equation 54 yields equation 19. 


